
WATER SYSTEM CONTROL OPTIMIZATION

Ryan Withers, P.E. RH2 Engineering, Inc.

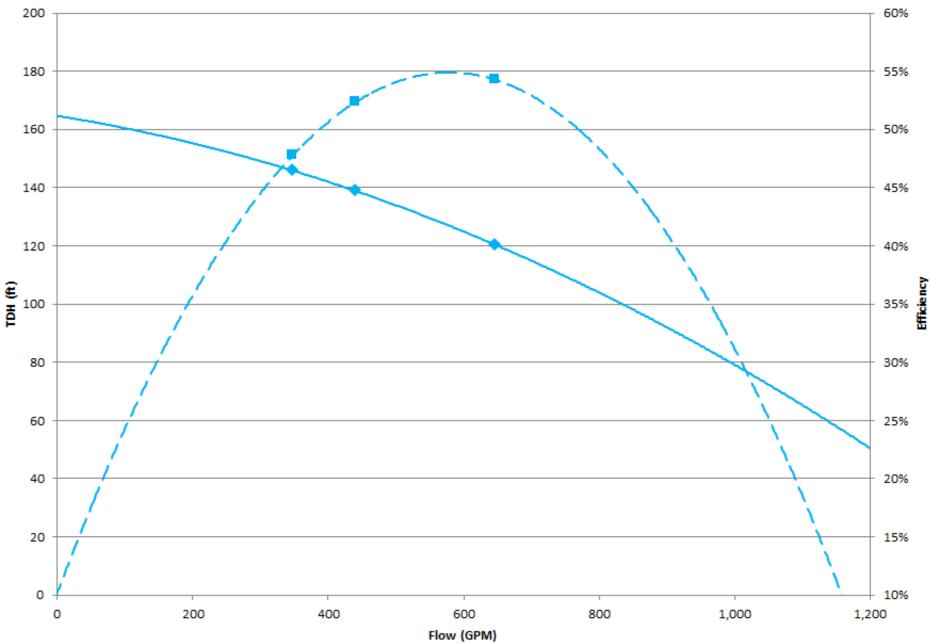
Outline

• Funded by BPA

- Analyzed 4 water systems
- Based on pump and motor field data, determined optimum control sequences for each facility

Data Collection

 Mechanical and electrical data collected for 17 pumps and motors



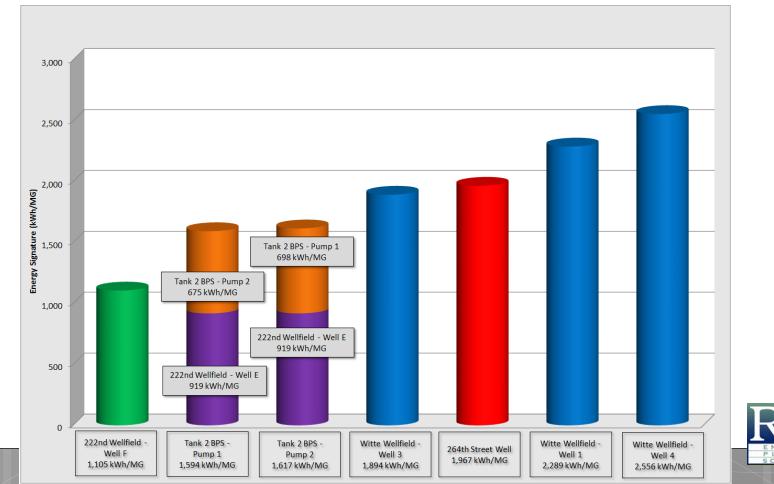
Data Analysis

Developed pump curvesCalculated energy signatures

Tank 2 BPS - Pump 1

. .

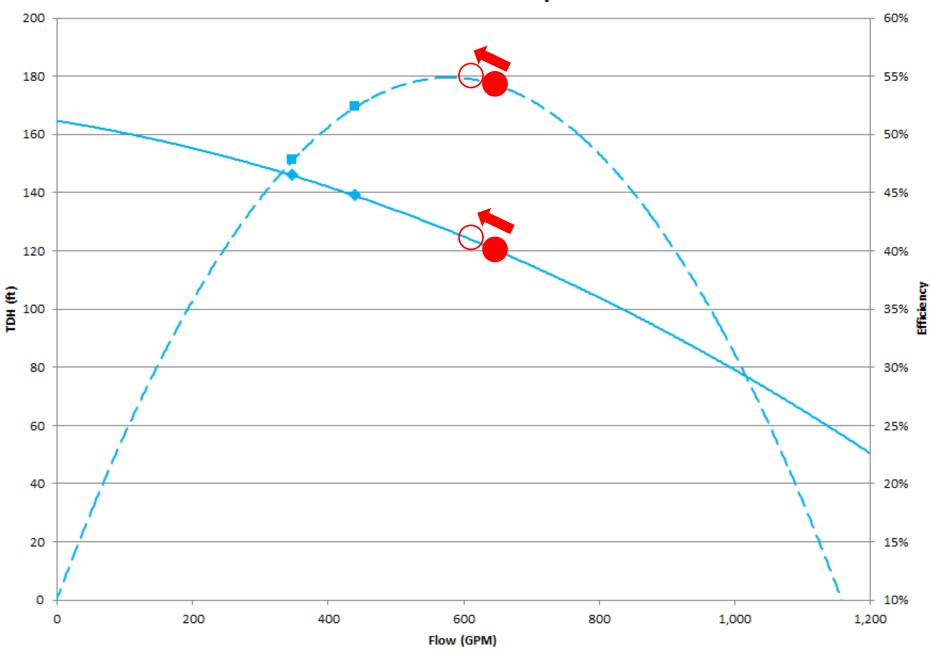
Energy Signature


• Function of:

- System demands
- Mechanical and electrical equipment efficiency
- Suction and discharge pressures
- Groundwater level (for well pumps)

Pump Sequencing

• Based on energy signature



Multiple Pump Operation

- Pumps may operate at different points on curve
- InfoWater hydraulic model used to estimate the energy signature of each pump

Tank 2 BPS - Pump 1

Single Pump	Energy Signature (kWh/MG) ¹	Two-Pump Combo	Energy Signature (kWh/MG) ¹	
T2 - 1 ¹	1,617	T2 - 1, T2 - 2	2,561	
T2 - 2 ¹	1,594	T2 - 1, WR 1	3,885	
WR 1 ²	2,289	T2 - 1, WR 3	3,543	
WR 3 ²	1,894	T2 - 1, WR 4	4,182	
WR 4^2	2,556	T2 - 1, 264	3,514	
264	1,967	T2 - 1, 222 F	3,082	
222 F ²	1,105	T2 - 2, WR 1	3,857	
		T2 - 2, WR 3	3,513	
		T2 - 2, WR 4	4,164	
		T2 - 2, 264	3,523	
		T2 - 2, 222 F	3,064	
		WR 1, WR 3	4,188	
		WR 1, WR 4	4,816	
		WR 1, 264	4,198	
		WR 1, 222 F	3,715	
		WR 3, WR 4	4,471	
		WR 3, 264	3,834	
		WR 3, 222 F	3,372	
		WR 4, 264	4,465	
		WR 4, 222 F	4,013	
		264, 222 F	3,366	

(1) The energy signatures of the Tank 2 BPS pumps include the energy signature of the 222nd Wellfield - Well E, which is required to indirectly supply the 770 Zone when the Tank 2 BPS is operating. The energy signature of the Tank 2 BPS Pump 1 is 698 kWh/MG and the energy signature of the Tank 2 BPS Pump 2 is 675 kWh/MG.

(2) The Witte Road Wellfield wells alternate as the lead supply pumps during the summer months, and the 222nd Wellfield - Well F is the lead supply pump in the winter months.

T2 Prefix = Tank 2 BPS

WR Prefix = Witte Road Wellfield

264 Prefix = 264th Street Well

222 Prefix = 222nd Place Wellfield

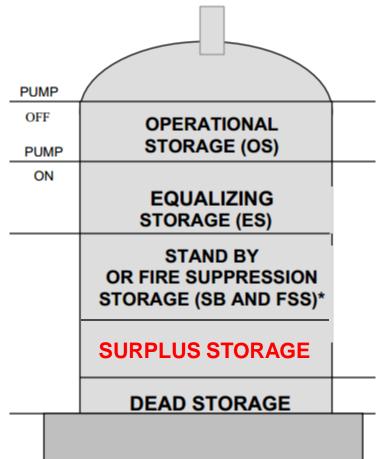
####	Existing pump sequence for each pump combination (see footnote 2)
####	Most efficient energy signature for each pump combination
####	Existing pump sequence and most efficient energy signature for each pump combination

System-wide Energy Savings

Energy Efficiency Measure #1
 Optimum pump sequencing

Description	Baseline System	Proposed System ¹	Total Savings	Percent Savings		
Energy and Demand Costs (\$)	\$61,225	\$46,708	\$14,518	23.7%		
Energy Consumption (kWh)	526,494	456,667	69,827	13.3%		
Power Demand (kW)	3,100	1,942	1,158	37.3%		
(1) Proposed system with Energy Efficiency Measure #1.						

Cost Saving Measures 770 Zone, 73% 660 Zone, 27% 941 Zone (T6), 🗸 _650 Zone, 0% 0%



System-wide Energy Savings (cont.)

Energy Efficiency Measure #2
Optimum pump sequencing
Pressure/hydraulic grade optimization

System-wide Energy Savings (cont.)

System-wide Energy Savings (cont.)

Energy Efficiency Measure #2
Optimum pump sequencing
Pressure/hydraulic grade optimization

Description	Baseline System	Proposed System ¹	Total Savings	Percent Savings	
Energy and Demand Costs (\$)	\$61,225	\$41,975	\$19,250	31.4%	
Energy Consumption (kWh)	526,494	416,076	110,418	21.0%	
Power Demand (kW)	3,100	1,615	1,485	47.9%	
(1) Proposed system with Energy Efficiency Measures #1 and #2.					

Implementation

3 options

- 1. Manual sequencing
- 2. SCADA and PLCs estimate energy signatures and optimum sequences
- 3. SCADA and PLCs monitor actual real-time energy signatures

Implementation 1. Manual Sequencing

• No cost

- Operators can change lead/lag pumps in existing SCADA system
- Energy signatures not monitored
- Possibility for sequences to be changed to less efficient scenarios over time

Implementation 2. Estimating Energy Signatures

\$4,000 per pump and motor combination
Energy signatures estimated by the PLC
If flow, suction, and discharge pressures are

- If flow, suction, and discharge pressures are monitored by the SCADA system
- Estimate based on field data used in this study
- Update the HMI at each PLC

Implementation 3. Actual Real-Time Energy Signatures

- \$6,000 per pump and motor combination
- Connect sensors to the 3 power phases to monitor power data digitally
- Communication to the PLC via a serial connection

Implementation

- 3. Actual Real-Time Energy Signatures (cont.)
- Energy signatures vary based on system conditions
- Monitor pump or motor over time to see if it is in need of maintenance or overhaul prior to failure

Implementation 3. Actual Real-Time Energy Signatures (cont.)

• Simple payback

• 6 years

OR

- 4 years with PSE incentive
 - Only receive incentive with real-time monitoring

Projected Annual Energy Savings

- Organization A: 9.1%
- Organization B: 8.7%
- Organization C: 13.3%
- Organization D: 7.5%

Questions?

Ryan Withers, P.E. RH2 Engineering, Inc. rwithers@rh2.com 425.951.5334

