2012 IECC with Washington State Amendments

Gary Nordeen, Luke Howard, Emily Salzberg, Tanya Beavers

(360) 956-2042
energycode@energy.wsu.edu

Produced with funding from:
WSU Energy Program

Provides energy services, products, education and information for:

- Businesses
- Utilities, public and private
- Governments, state and local
- Tribes
- Federal agencies
- Manufacturing plants
- Educational facilities
- National laboratories
WSU Energy Program
Building Science Team

Staff provides building science expertise for:

- Residential energy code technical assistance
- Voluntary programs, Northwest ENERGY STAR Homes
- Research and development, Building America
- Community-based upgrade programs
- Industry training and certifications; HERS, BPI, ENERGY STAR, PTCS
Technical support provided in WA:

- Training offered throughout WA State
- Phone and email inquiry hotline support
- Energy code compliance tools
- Website
- Technical Advisory Groups (TAGs)
Energy Code Support in WA State

Residential
 • Washington State University Energy Program
 • 360–956–2042
 • energycode@energy.wsu.edu
 • www.energy.wsu.edu/code
 • Gary Nordeen, Luke Howard, Emily Salzberg, Tanya Beavers

Non-residential
 • Northwest Energy Efficiency Council
 • Lisa Rosenow
 • 206–624–0283
 • Lisa@putnamprice.com
 • www.neec.net
Class Participants Will Gain an Understanding of:

• Resources available through WSU Energy Program
• Benefits of energy conservation
• Organization of energy code requirements and where to find them
• Changes from 2009 WSEC
• Compliance options and resources available for documentation
• Building science behind energy code requirements
Code Development Process

Agency – State Building Code Council
Cycle – every three years
Energy Code Technical Advisory Group (TAG) – 26 individuals who represent the various stakeholders in the construction industry

- SBCC approved transition to 2012 IECC with WA State amendments on Nov 30, 2012.
- Still needs to sit through current legislative session before finalized.

How Did We Get Here?

- 1980 – Creation of Northwest Power Planning Council by Congress
- 1983 – First regional Power Plan by NWPPC
 - Plan included *Model Conservation Standards* (MCS)
 - Halfway to full MCS requirements
- 1991 – Washington State Legislature mandates Energy Code requirements be raised to full MCS levels
What did we get?
1980 to 2008

• From 1980 to 2008 energy efficiency has:
 • Saved more than 4,000 average megawatts

• How much is 4,000 average megawatts?

 • Enough energy to power all of Idaho and Western Montana and a city the size of Eugene (pop. 156,000)
What did we get?
1980 to 2008

• ½ the growth in electricity demand is from conservation

• 8–10 coal or gas fired generation plants did not have to be built

• 15 million tons less CO2 in 2008 alone

• In 2008 consumers paid $1.8 billion less for electricity—even
2011

- Saved 211 average megawatts
 - Enough electricity for 188,000 homes
 - Saved consumers $3.1 billion in energy costs in 2011 alone
- From 1980 to 2011 conservation has saved 5,000 average megawatts
 - Enough electricity to power ALL of Montana and Idaho
- 50% of the savings come from Washington
- 20% of the savings come from energy codes
Code Layout

<table>
<thead>
<tr>
<th>2009 WSEC</th>
<th>2012 WSEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapters 1-10</td>
<td>Chapters 1-4 (RE)</td>
</tr>
<tr>
<td>SF, Duplex, Townhouses</td>
<td>SF, Duplex, Townhouses, R-2, R-3, R-4 buildings ≤ 3 stories in height*</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapters 11-15</td>
<td>Chapters 1-4 (CE)</td>
</tr>
<tr>
<td>Commercial</td>
<td>Commercial: Townhouses, R-2, R-3, R-4 buildings > 3 stories in height*</td>
</tr>
<tr>
<td>Multi-Family</td>
<td></td>
</tr>
<tr>
<td>Ch. 10 Default U-Factors</td>
<td>Appendix A</td>
</tr>
<tr>
<td>Ch. 3 Design Temperatures</td>
<td>Appendix B</td>
</tr>
<tr>
<td>Chapter 9 Energy Credits</td>
<td>Table 406.2</td>
</tr>
</tbody>
</table>

Refer to the International Building Code
This code shall be the maximum and minimum energy code for residential construction in each town, city and county.

This addition was added to the IECC to comply with state law – RCW 19.27A.
R101.4.2 Historic Buildings

No change from WSEC – allows building official to allow alternate requirements that result in reasonable degree of efficiency for buildings of historical significance.

WSEC language added for flexibility
R101.4.3 Additions, Alterations, Renovations or Repairs

Existing ceiling, wall or floor cavities exposed during construction provided that these cavities are filled with insulation.

- 2x4 framed walls insulated to R-15
- 2x6 framed walls insulated to R-21

WSEC language added for clarification
R101.4.3 Additions, Alterations, Renovations or Repairs

The building official can allow for less than full compliance if physically impossible and/or economically impractical and:

1. The alteration or repair improves the energy efficiency of the building; or

2. The alteration or repair is energy efficient and is necessary for the health, safety, and welfare of the general public.

No change from WSEC
R101.4.3.1 Mechanical Systems

WSEC language regarding duct testing in existing houses added in its entirety.

- Testing required but sealing is **not**
- Test results must be recorded on affidavit and presented to homeowner and building department

No change from WSEC
Duct Testing for Existing Construction

- Testing must be completed by certified technician
- Results provided to homeowner and building official on affidavit
- Exceptions:
 - Less than 40 lineal feet of ductwork outside conditioned space (combined supply and return)
 - Ducts containing asbestos
 - Ducts that have previously been tested
 - Ducts in additions less than 750sf (2012)
Duct Leakage Test Results (Existing Construction)

Permit #: _______________________

House address or lot number: _______________________________________

City: _______________ Zip: _______________

Cond. Floor Area (ft²): _______________

☐ Duct tightness testing is not required for this residence per exceptions listed at the end of this document

Test Result: ________CFM@25Pa

Ring (circle one): Open 1 2 3

Duct Tester Location: __________________________

Pressure Tap Location: __________________________

I certify that these duct leakage rates are accurate and determined using standard duct testing protocol

Company Name: __________________________

Duct Testing Technician: __________________________

Technician Signature: __________________________ Date: ____________

Phone Number: __________________________

Washington State Energy Code Reference:

R316.4.3.1 Mechanical Systems: When a space-conditioning system is altered by the installation or replacement of space-conditioning equipment (including replacement of the air handler, outdoor condensing unit of a split system air conditioner or heat pump, cooling or heating coil, or the furnace heat exchanger), the duct system that is connected to the new or replacement space-conditioning equipment shall be tested as specified in R5-33. The test results shall be provided to the building official and the homeowner.

Exceptions:

1. Duct systems that are documented to have been previously sealed as confirmed through field verification and diagnostic testing in accordance with procedures in R5-33.
2. Ducts with less than 40 linear feet in unconditioned spaces.
3. Existing duct systems constructed, insulated or sealed with asbestos.
4. Additions of less than 750 square feet.
R101.4.4 Change in Occupancy or Use

Change of use needs to be brought into full compliance.

No change from WSEC
Additions to Existing Buildings*

Exception

• Additions under 750 sf that do not fully comply with the code can make improvements to the existing occupancy that equate to or exceed the envelope deficiencies found in the addition

• Compliance must be demonstrated through component performance or systems analysis calculations

*Not allowed in 2012 WSEC
R102.1.1 Above Code Programs

- The Code Official or other authority having jurisdiction shall be permitted to deem a national, state or local energy efficiency program to exceed the energy efficiency required by this code.

- This section of IECC deleted because of minimum–maximum code conflict.
R104.2.1. Wall Insulation Inspection

Wall insulation inspection after all wall insulation, air barrier and vapor retarder materials are in place, but before any wall covering is placed.

WSEC language added because it is required by RCW 19.27A
R303.1 Insulation Certification

Insulation installers shall provide a certification listing:

- Type
- Manufacturer
- R-value of insulation installed in each element of the building thermal envelope.
R303.1 Insulation Certification

For blown or sprayed insulation (fiberglass and cellulose), the initial installed thickness, settled thickness, settled R-value, installed density, coverage area and number of bags installed shall be listed on the certification.
R303.1 Insulation Certification

For sprayed polyurethane foam (SPF) insulation, the installed thickness of the areas covered and R–value of installed thickness shall be listed on the certification.
R303.1 Insulation Certification

The insulation installer shall sign, date and post the certification in a conspicuous location on the job site.
Definition: NOMINAL R-VALUE:

The thermal resistance of insulation alone as determined in accordance with the U.S. Federal Trade Commission R-value rule.

www.ftc.gov/bcp/rulemaking/rvalue/index.shtml
R302.2 Exterior Design Conditions

- The heating or cooling outdoor design temperatures shall be selected from Appendix B.

No change from WSEC.

Table 3-1 added as Appendix B.
R303.1.3 Fenestration Product Rating

Exception:
Units without NFRC ratings produced by a small business* may be assigned default U–factors from Table R303.1.3(4) for vertical fenestration.

*See definition of “small business” in Chapter 2 [RE].
R401.2 Compliance

Projects shall comply with Sections identified as “mandatory” and with either:

- Prescriptive
- U-Factor Alternative
- Performance Approach

In addition, projects shall comply with Section R406 (2009 WSEC Chapter 9).
R401.2 Tools for Compliance

- Prescriptive – WSU form
- U-Factor Alternative – REScheck or other approved method
- Performance Approach – as required in R405

Check WSU’s Energy Code webpage for compliance tool information as it becomes available: www.energy.wsu.edu/code
R401.3 Certificate

- Posted within 3’ of electrical panel
- Insulation
- Windows
- HVAC efficiency
- Duct leakage
- Air leakage

- Certificate will be updated and posted at: www.energy.wsu.edu/code

<table>
<thead>
<tr>
<th>Property Address:</th>
<th>Conditioned Floor Area</th>
<th>Date / /</th>
</tr>
</thead>
<tbody>
<tr>
<td>Builder or registered design professional:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signature:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R-Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceiling: Vaulted R-</td>
</tr>
<tr>
<td>Attic R-</td>
</tr>
<tr>
<td>Walls: Above grade R-</td>
</tr>
<tr>
<td>Below, int. R-</td>
</tr>
<tr>
<td>Below, ext. R-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>U-Factors and SHGC</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRFC rating (or) Windows U-</td>
</tr>
<tr>
<td>Default rating (Chapter 10 WSEEB 2009) Skylights U-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 9 Option(s)</th>
<th>Total Chpt. 9 Credits</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Heating, Cooling & Domestic Hot Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>System</td>
</tr>
<tr>
<td>Heating</td>
</tr>
<tr>
<td>Cooling</td>
</tr>
<tr>
<td>DHW</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duct & Building Air Leakage</th>
</tr>
</thead>
<tbody>
<tr>
<td>All ducts & HVAC in conditioned space (yes / no)</td>
</tr>
<tr>
<td>Test Method: Total leakage Leakage to exterior Air handler present</td>
</tr>
<tr>
<td>Test Target CFM@25Pa Test Result CFM@25Pa</td>
</tr>
<tr>
<td>Building air leakage target: SLA<0.00030 Tested leakage: SLA=</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Onsite Renewable Energy Electric Power System</th>
</tr>
</thead>
<tbody>
<tr>
<td>System type: Rated annual generation Kwh</td>
</tr>
</tbody>
</table>
Climate Zone Changes

2012 WSEC

Climate Zone 6

Climate Zone 5 and Marine 4

2009 WSEC

ZONE II

ZONE I
R402.1.1 Prescriptive Requirements

Climate Zone 5 and Marine 4

<table>
<thead>
<tr>
<th>FENESTRATION U-FACTOR</th>
<th>SKYLIGHT U-FACTOR</th>
<th>GLAZED FENESTRATION SHGC</th>
<th>CEILING R-VALUE</th>
<th>WOOD FRAME WALL R-VALUE</th>
<th>MASS WALL R-VALUE</th>
<th>FLOOR R-VALUE</th>
<th>BELOW GRADE WALL R-VALUE</th>
<th>SLAB R-VALUE & DEPTH</th>
<th>CRAWL SPACE WALL R-VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.30</td>
<td>0.50</td>
<td>NR</td>
<td>49</td>
<td>21 int</td>
<td>21/21h</td>
<td>30g</td>
<td>10/15</td>
<td>21 int</td>
<td>10, 2 ft</td>
</tr>
</tbody>
</table>

Climate Zone 6

<table>
<thead>
<tr>
<th>FENESTRATION U-FACTOR</th>
<th>SKYLIGHT U-FACTOR</th>
<th>GLAZED FENESTRATION SHGC</th>
<th>CEILING R-VALUE</th>
<th>WOOD FRAME WALL R-VALUE</th>
<th>MASS WALL R-VALUE</th>
<th>FLOOR R-VALUE</th>
<th>BELOW GRADE WALL R-VALUE</th>
<th>SLAB R-VALUE & DEPTH</th>
<th>CRAWL SPACE WALL R-VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.30</td>
<td>0.50</td>
<td>NR</td>
<td>49</td>
<td>21</td>
<td>21/21h</td>
<td>30</td>
<td>10/15</td>
<td>21 int</td>
<td>10, 4 ft</td>
</tr>
</tbody>
</table>
R402.1 Footnotes

Climate Zone 5 and Marine 4
Also applies to Zone 6

<table>
<thead>
<tr>
<th>FENESTRATION U-FACTOR</th>
<th>SKYLIGHT U-FACTOR</th>
<th>GLAZED FENESTRATION SHGC<sup>b, e</sup></th>
<th>CEILING R-VALUE</th>
<th>WOOD FRAME WALL R-VALUE</th>
<th>MASS WALL R-VALUE<sup>i</sup></th>
<th>FLOOR R-VALUE</th>
<th>BELOW GRADE WALL R-VALUE</th>
<th>SLAB<sup>d</sup> R-VALUE & DEPTH</th>
<th>CRAWL SPACE WALL R-VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.30</td>
<td>0.50</td>
<td>NR</td>
<td>49</td>
<td>21 int</td>
<td>21/21<sup>h</sup></td>
<td>30<sup>c</sup></td>
<td>10/15 21int+TB</td>
<td>10, 2 ft</td>
<td>45/49</td>
</tr>
</tbody>
</table>

Insulating crawl space walls instead of installing floor insulation is not prescriptively permitted.

Footnote “D” requires continuous slab insulation under heated slabs.

Footnote “J” allows the reduction from R–49 to R–38 for vaulted ceilings.
R402.1 Footnotes

Climate Zone 6

<table>
<thead>
<tr>
<th>FENESTRATION U-FACTOR</th>
<th>SKYLIGHT U-FACTOR</th>
<th>GLAZED FENESTRATION SHGC</th>
<th>CEILING R-VALUE</th>
<th>WOOD FRAME WALL R-VALUE</th>
<th>MASS WALL R-VALUE</th>
<th>FLOOR R-VALUE</th>
<th>BELOW GRADE WALL R-VALUE</th>
<th>SLAB R-VALUE & DEPTH</th>
<th>CRAWL SPACE WALL R-VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.30</td>
<td>0.50</td>
<td>NR</td>
<td>49</td>
<td>21+5 ci</td>
<td>21/21 b</td>
<td>30</td>
<td>10/15</td>
<td>10, 4 ft</td>
<td>45/49</td>
</tr>
</tbody>
</table>

Some R–values and U–factors have been changed to reflect the current requirements of the 2009 WSEC. Note that areas in Climate Zone 6 require foam sheathed walls and 4 feet of slab insulation.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.50</td>
<td>0.75</td>
<td>0.035</td>
<td>0.082</td>
<td>0.197</td>
<td>0.064</td>
<td>0.360</td>
<td>0.477</td>
</tr>
<tr>
<td>2</td>
<td>0.40</td>
<td>0.65</td>
<td>0.030</td>
<td>0.082</td>
<td>0.165</td>
<td>0.064</td>
<td>0.360</td>
<td>0.477</td>
</tr>
<tr>
<td>3</td>
<td>0.35</td>
<td>0.55</td>
<td>0.030</td>
<td>0.057</td>
<td>0.098</td>
<td>0.047</td>
<td>0.091c</td>
<td>0.436</td>
</tr>
<tr>
<td>4 except Marine</td>
<td>0.35</td>
<td>0.55</td>
<td>0.026</td>
<td>0.057</td>
<td>0.098</td>
<td>0.047</td>
<td>0.059</td>
<td>0.065</td>
</tr>
<tr>
<td>5 and Marine 4</td>
<td>0.30</td>
<td>0.50</td>
<td>0.026</td>
<td>0.056</td>
<td>0.056</td>
<td>0.029</td>
<td>0.042</td>
<td>0.055$^{2'}$</td>
</tr>
<tr>
<td>6</td>
<td>0.30</td>
<td>0.50</td>
<td>0.026</td>
<td>0.044</td>
<td>0.044</td>
<td>0.029</td>
<td>0.042</td>
<td>0.055$^{2'}$</td>
</tr>
<tr>
<td>7 and 8</td>
<td>0.32</td>
<td>0.55</td>
<td>0.026</td>
<td>0.048</td>
<td>0.057</td>
<td>0.028</td>
<td>0.050</td>
<td>0.055$^{2'}$</td>
</tr>
</tbody>
</table>

U–factors in Table 402.1.3 have been modified to reflect the R–values in Table 402.1.1.
R402.1.4 Total UA Alternative

• UA Alternative is formerly known as Component Performance.

• The U–factors for typical construction assemblies are included in Appendix A. Appendix A contains default U–factors from 2009 WSEC Chapter 10.

• Language was added with a 15% maximum glazing area for the target house when using the “Total UA Alternative” (Component Performance). 15% is the glazing percentage in RCW 19.27A.
UA Alternative

Building Envelope Trade-Off

<table>
<thead>
<tr>
<th>Component Performance, R-3 Occupancies</th>
<th>Code Target Values</th>
<th>Proposed Design Values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Area</td>
<td>UA</td>
</tr>
<tr>
<td>Vertical Glazing U = 0.300</td>
<td>330</td>
<td>99.0</td>
</tr>
<tr>
<td>Overhead Glazing U = 0.500</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Doors U = 0.200</td>
<td>42</td>
<td>8.4</td>
</tr>
<tr>
<td>Flat/Vaulted Ceilings U = 0.027</td>
<td>1100</td>
<td>29.7</td>
</tr>
<tr>
<td>Wall (above grade) U = 0.056</td>
<td>2032</td>
<td>113.8</td>
</tr>
<tr>
<td>Floors U = 0.029</td>
<td>1100</td>
<td>31.9</td>
</tr>
<tr>
<td>Slab on Grade F = 0.360</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Below Grade</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2' depth, wall U = 0.042</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>2' depth, slab F = 0.590</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>3.5' depth, wall U = 0.041</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>3.5' depth, slab F = 0.640</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>7' depth, wall U = 0.037</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>7' depth, slab F = 0.570</td>
<td>0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Target UA Total: 282.5

Proposed UA Total: 280.6

Target Credits from Chpt. 9: 1.0

Proposed Credits from Chpt. 9: 1.0

If the Proposed UA ≤ the Target UA, and the Proposed Credits From Chpt. 9 are ≥ 1 then the home meets the 2009 WSEC.
R402.2.1.1 Loose Insulation in Attics

Loose insulation in attic spaces—Open-blown or poured loose fill insulation may be used in attic spaces where the slope of the ceiling is not more than 3 feet in 12 and there is at least 30 inches of clear distance from the top of the bottom chord of the truss or ceiling joist to the underside of the sheathing at the roof ridge.

Language from WSEC added for clarity when blowing in attic insulation.
R402.2.7 Floors

R402.2.7 Floors. Floor insulation shall be installed to maintain permanent contact with the underside of the subfloor decking.
R402.2.7 Floors

R402.2.7 Floors. Insulation supports shall be installed so spacing is no more than 24 inches on center. Foundation vents shall be placed so that the top of the vent is below the lower surface of the floor insulation.
Exceptions:
When foundation vents are not placed so that the top of the vent is below the lower surface of the floor insulation, a permanently attached baffle shall be installed at an angle of 30° from horizontal, to divert air flow below the lower surface of the floor insulation.

WSEC language added for insulation support requirements.
Exceptions:
Substantial contact with the surface being insulated is not required in enclosed floor/ceiling assemblies containing ducts where full depth insulation is installed between the duct and the exterior surface.
R402.2.8 Basement walls

- Exterior Insulation
 - R–10 Continuous

- Interior Insulation
 - R–15 Continuous

R–21 Cavity (allowed but no recommended)
R402.2.8 Basement walls

Vapor retarders below grade are not recommended.

R702.7 Vapor retarders. Class I or II vapor retarders are required on the interior side of frame walls in Climate Zones 5, 6, 7, 8 and Marine 4.

Exceptions:
1. Basement walls.
2. Below grade portion of any wall.
3. Construction where moisture or its freezing will not damage the materials.
Vapor retarder requirements no longer found in the Energy Code. Moisture control requirements are covered in the 2012 IRC.
R402.2.9.1 Radiant slabs (Mandatory)

The entire area of a radiant slab shall be thermally isolated from the soil with a minimum of R–10 insulation.

WSEC insulation requirements for radiant slabs added.
Unvented crawl spaces are not prescriptively allowed.

This section deleted in its entirety.
These sections deleted in their entirety.

These sections deleted. Less stringent than the WSEC.
R402.4.1.2 Air Leakage Testing

Air leakage testing based on “air changes per hour” and not “specific leakage area”.

The IECC maximum leakage rate is 3 \(\text{ACH}_{50} \).

This was changed to 5 \(\text{ACH}_{50} \) for WA.
R402.4.1.2 Air Leakage Testing

- Blower door testing required for all new construction and additions over 750sf
- Results reported on certificate
- Home must not exceed maximum leakage rate
 5.0 ACH50
R402.4.1.2 Air Leakage Testing

- Test done in closed house condition
- Depressurize house to 50 Pascals
- Air flow through the fan = air flow through leaks in the building envelope
- Convert CFM to ACH50
- *Who can test?*
How to Calculate ACH_{50}

- Determine leakage rate of house with blower door (CFM @ 50 pascals)
- Calculate to volume of the house (ft^3)

$$ACH_{50} = \frac{(CFM \times 60)}{Volume}$$
R403.1.2 Heat Pump Supplementary Heat (Mandatory)

All heat pumps installed under this section shall include the capability to lock out the supplementary heat based on outdoor temperature. This control shall have a maximum setting of 40° F. At final inspection, the lock out control shall be set to 35° F or less.

WSEC language added for clarity. IECC does not cite outdoor temperatures.
2012 Duct Insulation (Prescriptive)

• Ducts shall be insulated to a minimum of R-8

Exception: Ducts or portions thereof located completely inside the building thermal envelope. Ducts located in crawl spaces do not qualify for this exception.
R403.2.2 Duct Testing (Mandatory)

Duct testing required in all new construction

- Current 2009 targets are 6% and 8% depending on test method
- Targets will change to 4% leakage in 2012
- Same target for total leakage and leakage to exterior
- Testing done by certified technician
- Results documented on affidavit
Ducts

- Installation of ducts in exterior walls, floor or ceilings cannot displace required insulation
- Building cavities cannot be used as ducts
R403.4.2 Hot Water Pipe Insulation (Prescriptive)

This section deleted in its entirety.

IECC language deleted to minimize confusion. All hot water pipes are required to be insulated to R-4.
403.4.3 Electric Water Heater Insulation

All electric water heaters in unheated spaces or on concrete floors shall be placed on an incompressible, insulated surface with a minimum thermal resistance of R–10.

WSEC language added for water heaters installed in unheated spaces or on slabs.
R404.1 Lighting Equipment (Mandatory)

A minimum of 75 percent of the lamps in permanently installed lighting fixtures shall be high-efficacy lamps.
R404.2 Exterior Lighting

Luminaires providing outdoor lighting and permanently mounted to a residential building or to other buildings on the same lot shall be high efficacy luminaires.

EXCEPTIONS:

Permanently installed outdoor luminaires that are not high efficacy shall be allowed provided they are controlled by a motion sensor(s) with integral photocontrol photosensor.

Permanently installed luminaires in or around swimming pools, water features
Table 406.2 Energy Credits

- WSEC Chapter 9 is now Table 406.2
- All new construction must develop credits from Table 406.2 based on size of dwelling unit.
<table>
<thead>
<tr>
<th>Requirement</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Houses < 1500 ft²</td>
<td>0.5</td>
</tr>
<tr>
<td>• 300 ft² max. glazing</td>
<td></td>
</tr>
<tr>
<td>• Additions 750 ft²</td>
<td></td>
</tr>
<tr>
<td>Houses ≥ 1500 ft² – 5,000 ft²</td>
<td>1.5</td>
</tr>
<tr>
<td>Houses > 5,000 ft²</td>
<td>2.5</td>
</tr>
</tbody>
</table>