Roadmap for Success: Strategic Energy Management Planning

The Business Case For Energy Upgrades

Terry Egnor, MicroGrid/BetterBricks

May 14, 2010

2010 Energy/Facilities Connections Conference

Who is BetterBricks?

www.BetterBricks.com

A program of the Northwest Energy Efficiency Alliance A source for tools, training, and technical advisors A strategic roadmap for energy management

BetterBricks Training Series

Roadmap for Success: Strategic Energy Management Planning

- 1. Benchmarking Your Building Energy Performance
- 2. Setting Energy Targets
- 3. Financial Analysis Tools for Evaluating Projects
- 4. Tracking Progress for Continuous Energy Performance Improvement

The Roadmap Supports Continuous Improvement

Excellent firms don't believe in excellence - only in constant improvement and constant change. Tom Peters

Today's Topic

Making the Business Case for Energy Upgrades

- 1) Follows "Setting Energy Targets"
- 2) Creating a Financial Frame for the Project
- 3) Using the Right Tool for the Job
- 4) Aligning with Organizational Goals
- 5) What tools and resources are available?

What's UPS Mean?

What's UPS Mean?

<u>Uninterruptible Power Supply</u>

What's UPS Mean?

What the CFO may hear when you say
UPS

One CFO Perspective:

Cost Control is King!

Source: CFO Survey: GE Healthcare Financial Services

Competition for Approval

Energy management results in <u>avoided cost</u>

New products result in new revenue

How do you level the playing field?

Energy Efficiency Contributes to Cost Control – But How Is It Counted?

Capital vs. Operating Budgets

Capital

Annual or longer cycle
Little flexibility – sunk cost
Based on projections –
may not be empirically
supported

Moderate-to-high risk exposure for the institution

Operating

Annual allocation
Short term adjustment flexibility
Empirical precision

Low-to-moderate risk exposure to institution

Translating Energy Projects to CFO-speak

Create a compelling financial case

- Estimate project costs and benefit streams into the future using time value of money
- Derive either a cost or rate of return number that characterizes the project.

Align the project with corporate goals

- Identify links between project benefits or features and a corporate need
- o Document the potential [More on this later.]

Advantages of Energy Related Projects

- Project cost estimation can be relatively precise
- Excellent empirical evidence on energy savings and project life is available
- Commodity cost trends are known with reasonable confidence
- Energy cost uncertainty is tied to volatility, thereby enhancing the value of avoided cost strategies

Built-In Advantages of Energy Related Projects

- Project cost estimation can be relatively precise
- Excellent empirical evidence on energy savings and project life is available
- Commodity cost trends are known with reasonable confidence
- Energy cost uncertainty is tied to volatility, thereby enhancing the value of avoided cost strategies

Can you say RISK MANAGEMENT!

Analyzing Energy Management Investment Opportunities

Economic Efficiency

Tools of the trade

- The simplicity of payback
- Importance of discounting
- The power of life cycle cost analysis
- The flexibility of internal rate of return calculations

Economic Efficiency

Simple Payback (SPB)

SPB = COST

SAVINGS/YR

SPB =
$$\frac{$100}{5}$$
 = 5.0 yrs

SPB = The number of years until the cumulative savings equals the cost <u>without regard for the time-value of money</u>.

Simple Payback (SPB)

Advantages

- Fast
- Simple
- Shows time period to recovery of funds
- Does not require discounting for timevalue of money

Use for quick screening tool for similar items

Disadvantages

- Too Simple
- Does not define relative efficiency or scale
- Does not account for additional savings over measure lifetime
- Does not account for time-value of money
- Not meaningful for dissimilar options

More Powerful Analytical Tools

Life Cycle Cost

- Determines total cost of ownership for a project over its life expectancy
- Detailed comparison tool for similar items
- Comprehensive
- Well defined risk profile

Internal Rate of Return

- Determines the percent return to the organization for a given investment
- Detailed analysis tool
- Often used as an initial "Hurdle Rate" for investment by the organization

Discounting

"A nickel isn't worth a dime today."

Yogi Berra

"Inflation is when you pay fifteen dollars for the ten-dollar haircut you used to get for five dollars when you had hair."

Sam Ewing

Discounting

Discount Rate (DR)= 10%

Cost = \$ 100.00

Year>	1	2	3	4		5	6		7		8
Nominal Savings	\$ 20.00	\$ 20.00	\$ 20.00	\$ 20.00	\$	20.00	\$ 20.00	\$	20.00	\$	20.00
Cuml Discount Rate Calc	(1- DR)^1	(1-DR)^2	(1-DR)^3	(1-DR)^4		(1-DR)^5	(1-DR)^6	5	(1-DR)^7		(1-DR)^8
Cuml Discount	0.9	0.81	0.729	0.656	i	0.590	0.531		0.478		0.430
Annual Discounted Savings	\$ 18.00	\$ 16.20	\$ 14.58	\$ 13.12	\$	11.81	\$ 10.63	\$	9.57	\$	8.61

Total Savings=Present Value								
Present Value Year 1 =	\$ 18.00							
Present Value Year 2 =		\$ 34.20						
Present Value Year 3 =			\$ 48.78					
Present Value Year 4 =				\$ 61.90				
Present Value Year 5 =					\$ 73.71			
Present Value Year 6 =						\$ 84.34		
Present Value Year 7 =							\$ 93.91	
Present Value Year 8 =								\$ 102.52

Life-Cycle Cost (LCC)

"Double bottom line"

- Considers operating costs in addition to first costs
- Typically applied to specific building components

"Triple bottom line"

 approach includes personnel costs/savings

Life-Cycle Cost (LCC)

$$LCC = C - S + M + R + E$$

Where:

C = Purchase cost installed

S = Salvage value

M = Maintenance and Repair Costs

R = Replacement cost

E = **Energy Costs**

[All costs and revenues are in discounted dollars]

Sample LCC Spreadsheet

	EXAMPLE 2 - Multi-Year - Discount Rate =											
Alternative A - Heat Pump 1	Non	inal		Alternative B - Heat Pump	2 <u>No</u>	ominal						
	Valu	es	Year		Va	lues	Year					
Term (life expectancy)			10	Term (life ex	kpectancy)		10					
Cost installed	\$	1,500		0 Cost installe	ed \$	2,100						
Salvage at end of life	\$	-		0 Salvage at 6	end of life \$	-						
Maintenance	\$	50		0 Maintenanc	e \$	50						
Replacement parts	\$	400		5 Replacement	nt parts \$	450						
Energy use per year*	\$	425		0 Energy use	per year*	300						

* Fuel

							esca	lation of			3.0%									
Y	/ear		0		1		2		3		4		5		6	7		8	9	10 Totals
5% S	C S	\$ 1,500	0																	\$ 1,500 \$ -
N	М ?		0		50		50		50		50		50		50 400	50		50	50	50 \$ 500 \$ 400
E	*			4	64	4	77	4	92		506		522		537	553		570	587	605 \$ 5,314
Nom Total	\$ 7,714	\$ 1,500	\$	514	\$	527	\$	542	\$	556	\$	572	\$	987	\$ 603	\$	620	\$ 637	\$ 655	\$ 7,714
Disc Total :	\$ 6,176	\$ 1,500	\$	488	\$	476	\$	464	\$	453	\$	442	\$	726	\$ 421	\$	411	\$ 402	\$ 392	\$ 6,176

	_																				
	Yea	ar		0		1		2		3		4		5		6	7		8	9	10 Totals
5%	С		\$ 2,100																		\$ 2,100
	M R			0		50		50		50		50		50		50	50		50 450	50	50 \$ 500 \$ 450
	E*				309		318		328		338		348		358	369		380	391	403	\$ 3.542
Nom Total	\$	6,592	\$ 2,100	\$	359	\$	368	\$	378	\$	388	\$	398	\$	408	\$ 419	\$	880	\$ 441	\$ 453	\$ 6,592
Disc Total	\$	5,447	\$ 2,100	\$	341	\$	332	\$	324	\$	316	\$	308	\$	300	\$ 293	\$	584	\$ 278	\$ 271	\$ 5,447

Life Cycle Cost

Analysis

These tools help you and your vendors work together to choose the equipment

that meets your needs at the lowest Total Cost of Ownership.

Life-Cycle Cost (LCC)

Advantages:

- Does account for total savings over measure lifetime
- Comprehensive
- Useful for comparing like solutions
- Does account for timevalue of money

Disadvantages:

- Does not indicate the return on investment
- Does not define scale or relative efficiency
- Not meaningful for dissimilar options

Use - Detailed comparison tool for similar items

The Internal Rate of Return

- is the equivalent of the interest rate earned on an investment.
- allows the comparison of dissimilar projects or alternatives in terms of their profitability.
- is often used as an initial project "hurdle rate".

BAD NEWS!

The equation for this function is quite complex and requires significant expertise to work from scratch.

Most spreadsheet programs and financial analysis programs have a simple "plug-in" model that allows easy calculation.

$$IRR = \Delta C - \Delta S + \Delta M + \Delta R + \Delta E$$

Where:

C = Purchase cost difference (installed)

S = Salvage value difference

M = Maintenance and Repair cost difference

R = Replacement cost difference

E = Energy Costs difference

[All costs and revenues are in discounted dollars]

Sample IRR Spreadsheet

-40

134

122

\$ (1,100)

9.19

Nom Total

-40

-40

147

-40

160

-40

174

-40

478

188

-40

202

-40

217

-40

\$ 248

232

-40 \$ (400) \$ 4,723

\$ 723

Advantages:

- Shows relative economic efficiency
- Does account for time-value of money
- Can compare dissimilar alternatives competing for investment dollars

Disadvantages:

- Does not define relative scale
- Does not provide information on the optimum size of investment

Uses:

- Detailed analysis tool
- Set "Hurdle Rate"

Providence Newberg

"The internal rate of return on the investment is estimated at 54 percent when incentives are factored into the equation and even higher with energy tax credits."

Richard Beam

Which Tool for Which Job?

To screen projects or options: SPB

To rank similar, mutually LCC

exclusive projects:

To size the economic optimum: LCC

To rank dissimilar, not mutually IRR exclusive projects:

To find a project rate of return: IRR

Strategic Issues

- What financial standards are used by your organization for decision-making purposes?
- What are the "hurdle rates" and calculation procedures for each?
- What economic efficiency policies could be implemented in energy related areas?

Alignment with Organizational Goals

Organizational Goals Frequently Linked to Energy Efficiency:

- Cost reductions/Higher net margins
- Higher productivity and comfort
- Healthier environment, inside and out
- Staff retention
- Quality of customer care
- Community leadership
- Reduced CO2 impacts on climate

Productivity - Lighting

Case Studies Introducing Improved Performance with Lighting Control Strategies

(* Performance improvement for specific tasks multiplied by estimated time at tasks.)

Productivity - Thermal Control

*Performance improvement for specific tasks multiplied by estimated time at tasks | *** Occupant, satisfaction calculated relative to productivity gains from other studies |

Summary

Making the Business Case for Energy Upgrades

1. Create a financial frame for the project in "CFO-speak".

2. Use the right tool for the job.

3. Align your solution with organizational goals.

Getting Started

What's your next step?

- Go to the BetterBricks web site for their LCC spreadsheet and related documents
- Go to the Whole Building design Guide: http://www.wbdg.org/resources/lcca.php
 for a comprehensive treatment of LCC.
- 3) Sit down with your financial team and determine what they need and how they can help you get it.

Other Resources

ENERGY STAR® Buildings

www.energystar.gov

BetterBricks

www.betterbricks.com

Electric & Gas Utilities

Database of Incentives for Energy Efficiency http://www.dsireusa.org/

Roadmap for Success

Know your starting point

Accounting & benchmarking

Know your destination

 Establish an energy performance goal

Figure out your route

 Apply financial analysis tools to energy project decisions

Look at your map frequently

Measure and report progress

Continuous improvement is better than delayed perfection. Mark Twain

QUESTIONS?