WWSEC 2013 Opportunities for Energy Efficiency Gains at WPCF Bob Sprick City of Eugene (541) 682-8617

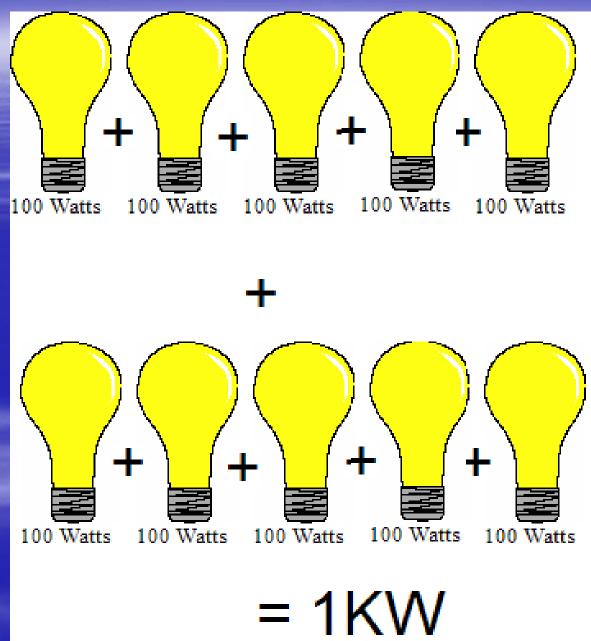
Energy Management

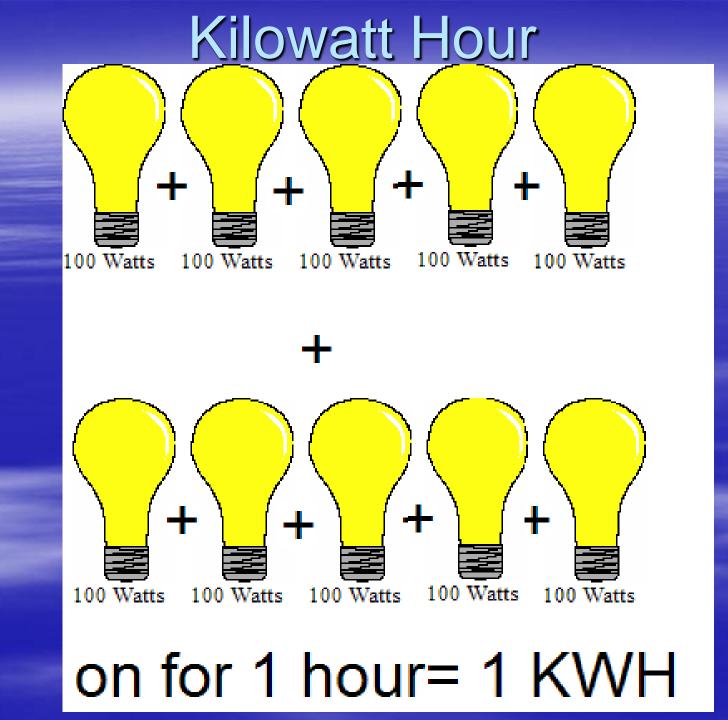
Energy Management Group Defining Energy Costs Energy Conservation Measures (ECM) Ways to Manage Energy Costs

Basic Question: If it uses energy what is the control measure? Best Practice?

Energy Management Group

- Upper Management Support
- Biggest Users Operations Off/On
- Process Control
- Maintenance PM
- Purchasing- Spec for premium efficiency & Energy Life Cost component
- Design review team & Equip. Replacement
- Service Provider
- Everybody is a player


Defining Energy Costs


Kilowatts (KW) = Watts/1000

- Kilowatt Hours (KWH) = KW X hours of operation
- Demand = highest KW for 15 minute period during billing period
 Power Factor= PF or KVAR

Kilowatts

Demand KW

 Usually the highest KW usage over 15 minutes during the billing period

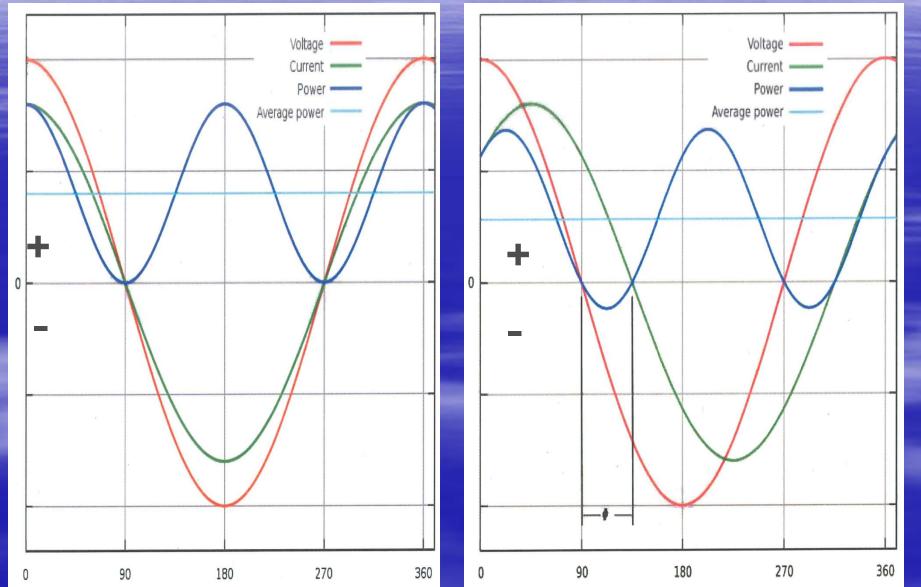
Read your power rate schedule /contract

Demand is not easily stored. Generated as needed.

Cost is highest rate ~\$ 6.65 / KW

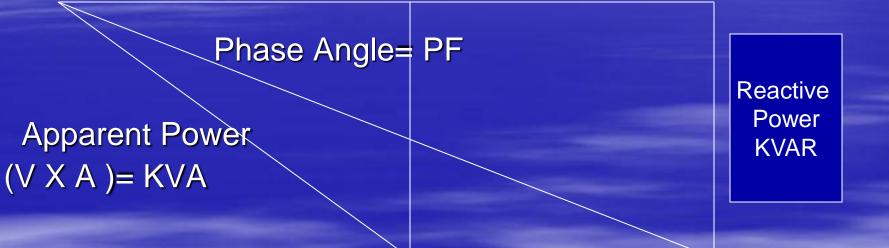
KWH cost accumulates \$0.0427 - \$0.08 per KWH

Power Factor


Check your bill

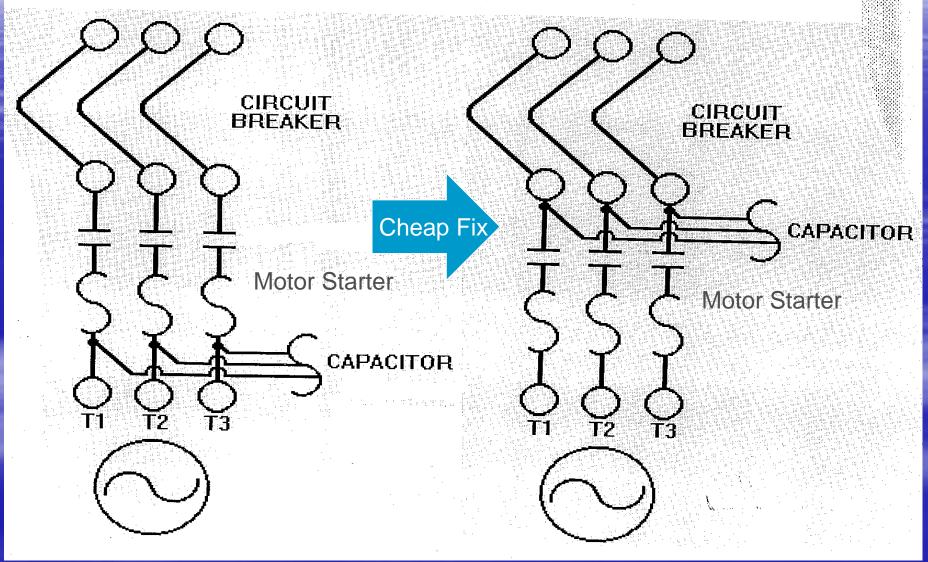
If you see PF or KVAR charges, contact your service provider for help.

Power factor charge is money spent for no usable energy.



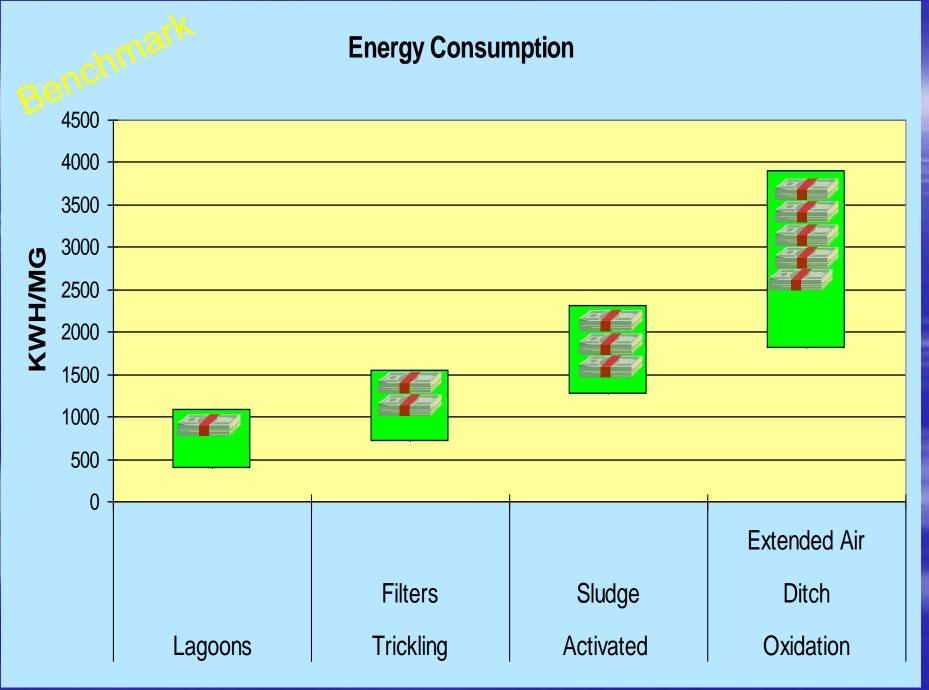
Pure ResistiveInductive PowerPowerP=I*E

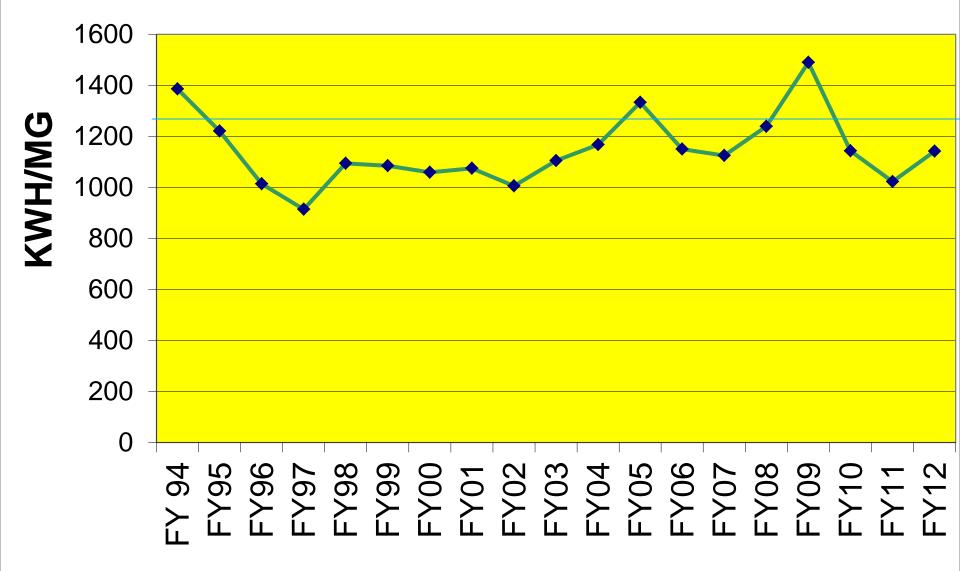
Power Factor


Active Power (V X A X PF) = KW

Reducing load to 50% increases PF problem

Fixing Power Factor

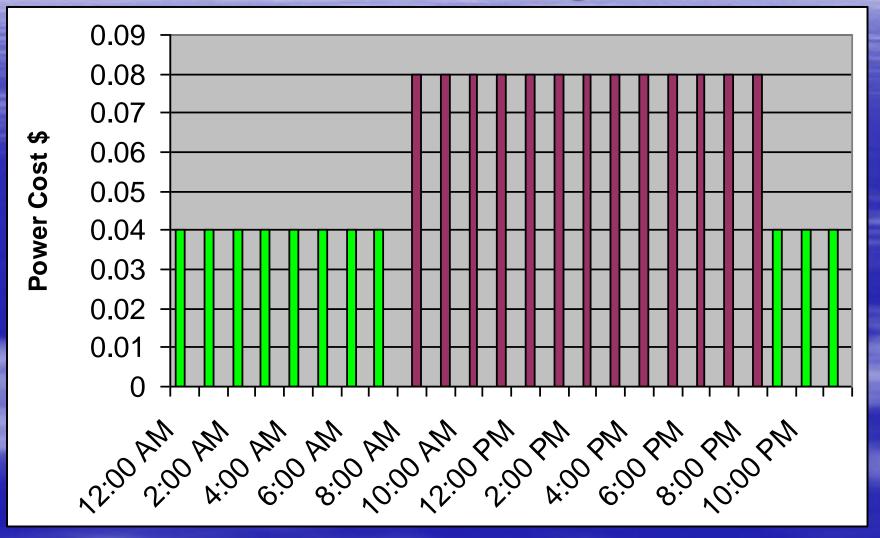

First check existing capacitors


Load Factor (LF)

- LF = KWH (billing period) X 100 KW X 24 X days in billing period Below 55% = oversized equipment Evaluate cause - Storm event other? ≻70% and above is pretty good for WWTP Pump-stations KWH/Run Time Flow then track KWH/MG

Energy Consumption

Power Usage E/S Metro



Energy Usage Costs 24hr Operation

Energy Usage Costs 24hr Operation

Oct-11	KVAR \$.28		Base Charge \$2,219 with first 300 KW =\$0					
HP	KW	\$/KW	Hours/	KWH/	\$KWH/Day	\$KWH/	Total \$	Total \$
		\$6.25	Day	Day	\$0.0422	Month	/Month	/ Year
1	0.746	\$4.66	24	18	\$0.76	\$23	\$27	\$328
2	1.492	\$9.33	24	36	\$1.51	\$45	\$55	\$656
3	2.238	\$13.99	24	54	\$2.27	\$68	\$82	\$984
4	2.984	\$18.65	24	72	\$3.02	\$91	\$109	\$1,312
5	3.73	\$23.31	24	90	\$3.78	\$113	\$137	\$1,640
10	7.46	\$46.63	24	179	\$7.56	\$227	\$273	\$3,279
15	11.19	\$69.94	24	269	\$11.33	\$340	\$410	\$4,919
20	14.92	\$93.25	24	358	\$15.11	\$453	\$547	\$6,559
25	18.65	\$116.56	24	448	\$18.89	\$567	\$683	\$8,199
30	22.38	\$139.88	24	537	\$22.67	\$680	\$820	\$9,838
40	29.84	\$186.50	24	716	\$30.22	\$907	\$1,093	\$13,118
50	37.3	\$233.13	24	895	\$37.78	\$1,133	\$1,366	\$16,397
75	55.95	\$349.69	24	1343	\$56.67	\$1,700	\$2,050	\$24,596
100	74.6	\$466.25	24	1790	\$75.55	\$2,267	\$2,733	\$32,795
125	93.25	\$582.81	24	2238	\$94.44	\$2,833	\$3,416	\$40,993
150	111.9	\$699.38	24	2686	\$113.33	\$3,400	\$4,099	\$49,192
200	149.2	\$932.50	24	3581	\$151.11	\$4,533	\$5,466	\$65,590
300	223.8	\$1,398.75	24	5371	\$226.66	\$6,800	\$8,199	\$98,384
400	298.4	\$1,865.00	24	7162	\$302.22	\$9,067	\$10,932	\$131,179
500	373	\$2,331.25	24	8952	\$377.77	\$11,333	\$13,664	\$163,974
1000	746	\$4,662.50	24	17904	\$755.55	\$22,666	\$27,329	\$327,948

Time of Use Billing Chart

If you have an on-peak / off-peak rate structure track power use percentage

Plan for Off- Peak Hours

- Look at your diurnal load and see what activities can be shifted
- Waste Thickening
- Thickened sludge pumping
- Tank draining
- Clean-up flushing
- recycle water- irrigation
- Surge basin, back up influent
- Generation gas storage- maintenance work

Energy Management

- Information on billing costs, check your bill
- Talk to power provider, identify best rate schedule, incentive funding, problem solving, audit programs
- Identify where energy is going-collect data- suitcase
- Ask what if questions about each piece of equipment
- Bring help from outside for expertise
- Make burgers out of sacred cows (change the way of doing)
- Find an Energy Champion(s)
- Invest in a management system
- Think private
- Just DO It, implement

Finding Energy Conservation Measures

- (ECM that effects WW treatment quality may not be well received "Risk Mgt.")
- Is the power necessary? (Turn lights out, heat down, Hot water set points)
- Can the on time be changed and task will still be accomplished? (Is there a load shift to off peak demand opportunity here?)
- Is the size appropriate? Over sizing is the name of the game. Measure actual power required - Bio fans
- Is the load variable? (Timer, Frequency drive)
- Does a change require human interface? Increase labor cost, training, behavior management

ECM that require a human interface to achieve requires training until you get it right.

Don't just act- communicate

Keep looking for a better best practice:

Plan Do Check Act (Adjust)

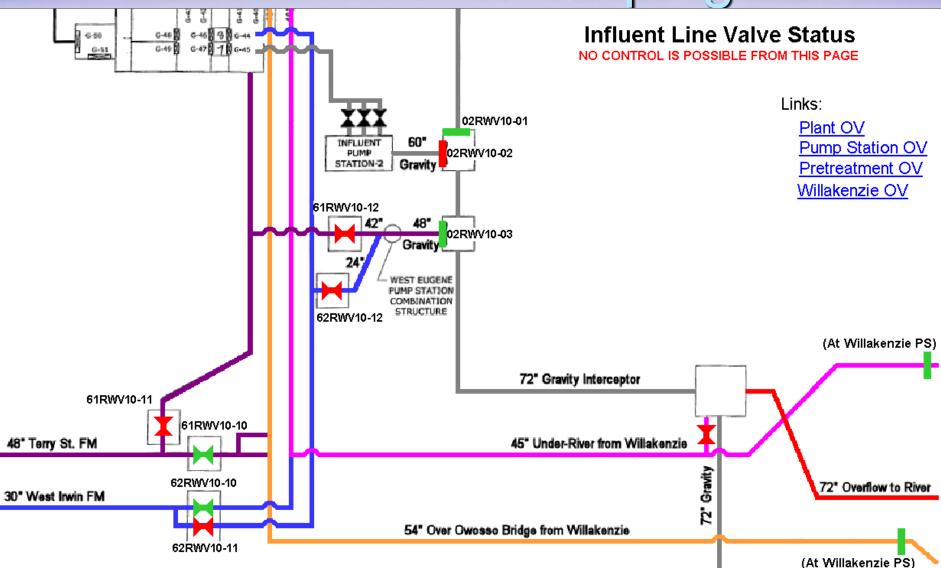
Energy Conservation Measures (ECM)

Plant Overview

		RAPHICS RAPHICS TREAT INFLUENT ETREAT SOLIDS EV PUMP CTRLS FINAL TREATMENT GH FLOW MGMT RETREAT GATES	PRETREAT	F GRIT 5&6 9 STAGING			1	53.57 MGD 580 KWH/MG 294 KW TOTAL 491 KW EWEB
	Status Messages	Information		ontrol				PS Overview
	Equip. Failures Status Alerts	Plant Powe BMF EQ Hrs		nt Alarms se Alarms			A AST	PUMP STATION MAP
	Interactive	Pri. End EQ H		Crytrol				The Roll
	Programming Log	Sec End EQ H		in Gate				
	Comments	Phone / Radio	#s Plant	Samplers				
		High Flow Gu	ide Plant I	LEL Meters				
		Help Topics	s Misc	ellaneous				
terminal and		Trend Referer						
		Tag Reference	ce		100	ない国の変		
Pretreat OV Primary OV Se	condary OV Final C	OV GBT OV	Digester OV	Pmp St OV	Willakenzie OV	BMF EQ		LOG VNET FAILURE

Green = on / run

Red = off / stop


Design Review

 Clear expectations/ specifications
 Outside review
 Think out of the box

- Many ECM require a design change- be proactive
- Get design engineer to explain over design criteria used?
- Is equipment choice correct? i.e. Do pumps down stream of fine screens or grinders need to be open face impellers?
- Apply payback policy guidelines

Redundant Pumping

Ready

Power Distribution

Process Area	% Power	KWH/LB cBOD removed
Pretreatment	20%	NA
Primary	4%	0.17 KWH
Secondary	51%	1.19 KWH
Final	15%	
GBT	4%	
Digestion	6%	
Before 23 MGD 10% rem After 45 MGD > 50% rem Annual 25.5% improved c	oval TSS	

Annual 746,250 KWH

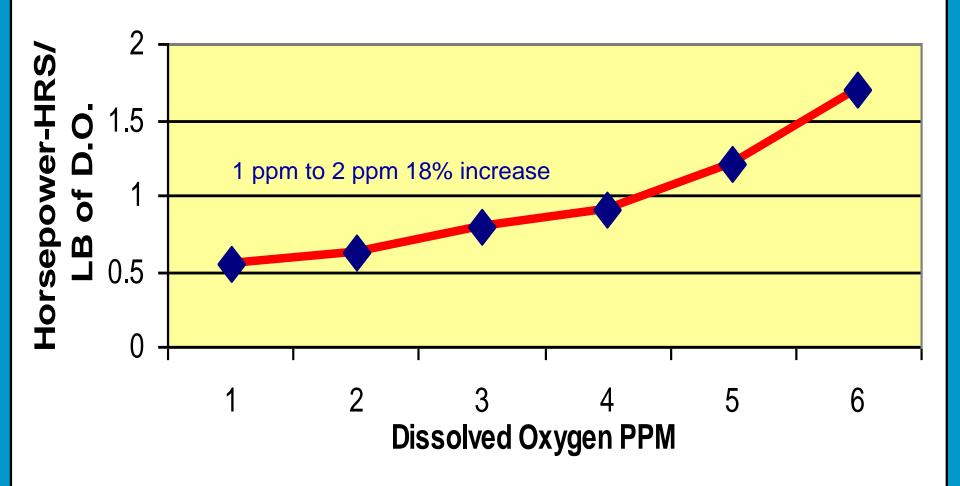
Energy Conservation Measures

- Audit reclaim water usage.
- Iower volume & pressure
- Timers on sprays
- booster pumps to increase psi where needed
- use nozzles, not open hose
- ask why it is on- adjust for need
- excessive cooling water
- increase pressure to do the work and turn back down when finished

Seal Water 10PSI over discharge pressure Electric solenoid

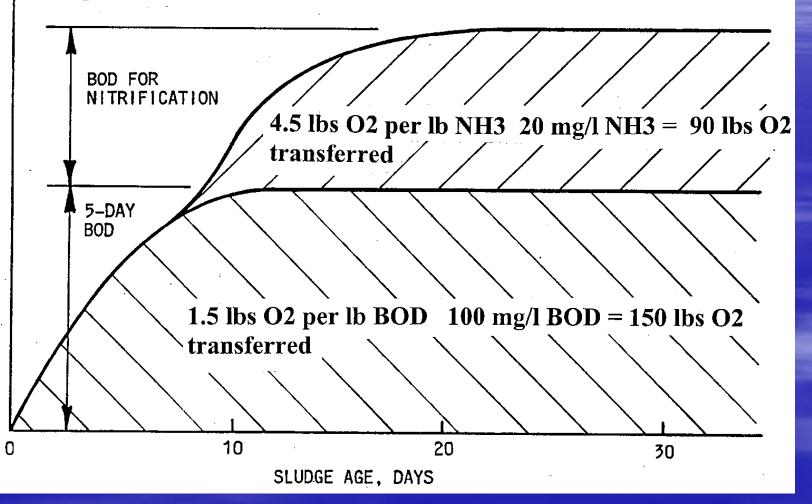
> Changing final chemicals: Reduced reclaim water usage for injectors saves 85,000 KWH and \$5,270 annually. \$13K incentive

> > 音


Grit cyclone overflow water used to operate screening sluice.

Reduces W2 use 20-25 HP or \$7,000/year

Aeration


- Automate D.O. control (25-40% savings)
- Lower header discharge pressure. We save 50KW per psi. (\$20,000 per year)
- Clip blower maximum output
- Clean intake filters
- For centrifugal blowers, use inlet valve to throttle.
- Positive displacement, VFD, sheaves, timers
- Switch to smaller blower during low demand-Timers
- Mechanical depth, timer, speed
- Motors < 25 HP turn down 66% load, > 25 HP 50%
- Fine bubble diffusers (save 50% or more)

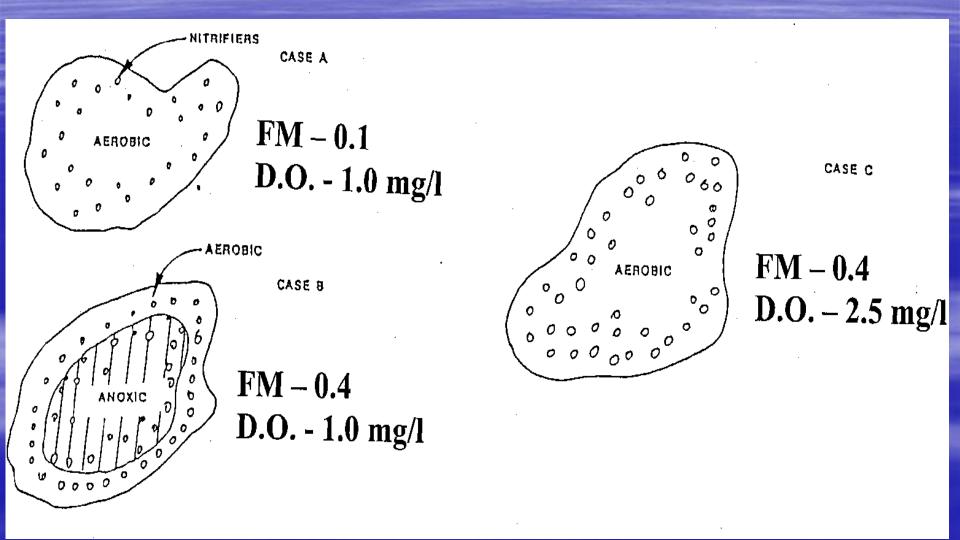
Power Requirements as function of MLSS Dissolved Oxygen

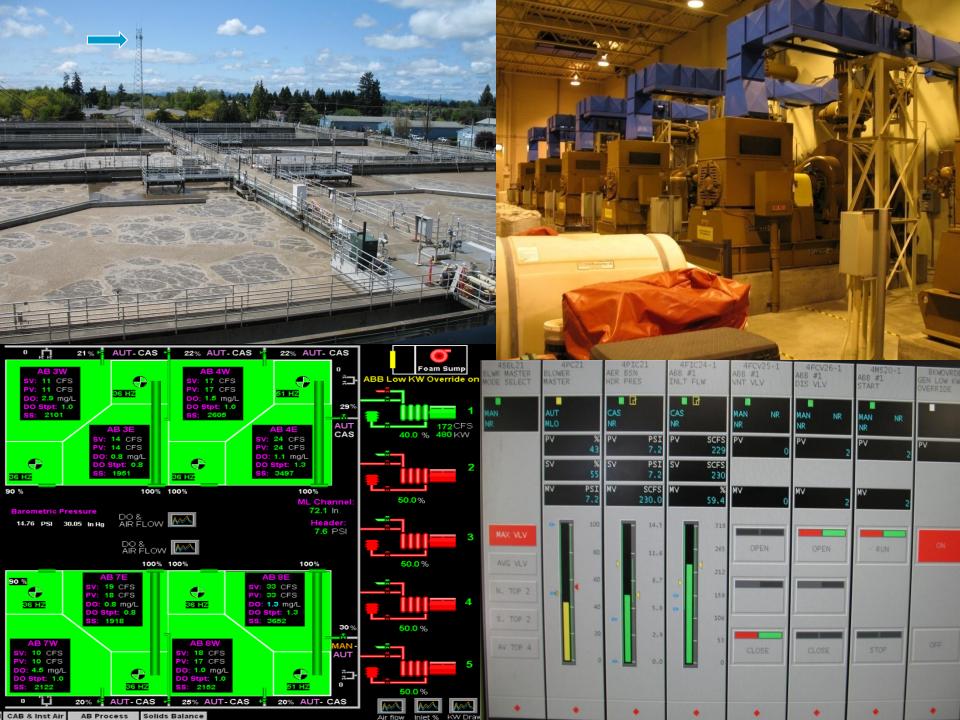
Power Required For Nitrification

Oxidizing NH3 can result in a 60% increase in aeration power

No ammonia limit- shut blower off a couple of hours each day- 8% savings

OXYGEN CONSUMED


Nritrifiers are strict aerobes


Chlorine demand 5:1

DO Concentration in relation to SRT

Clip blower output settings to save energy 1/23/2013 7:07:2 2 80.0 3 80.0 5 80.0 6 80.0 711.6 ◀ 4FIC24-1.MV 80.0%) ABB #1 INLT **Blower inlet Clip** 65% open Max 24FIC24-2.MV ABB #2 INLT Header PSI 34FIC24-3.MV ABB #3 INLT \land . Thank 44FIC24-4.MV ABB #4 INLT 47.8% 54FIC2-8W.PV **D**.O. AB 8W AIR VALV 20CFS 64AIC2-8W.PV AB 8W D.O. CONT 1.1 MG/L74FIC2-8E.PV AB 8E AIR VALV Air Flow CFS 38CFS 84AIC2-8E.PV AB 8E D.O. CONT

12:11*

22:11*

08:11*

1.21

18:11*

04:11*

14:07

1.22

00:07

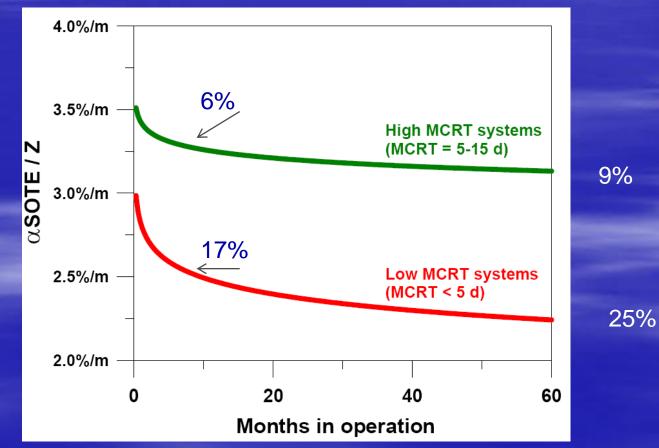
1.23

(-5.0%)

)*

1.0MG/L

100%


(=)75:00

Gathering

Diffuser Cleaning Improves transfer efficiency 10-40% Aeration zones with higher F/M foul faster

Aeration Paper Michael Stenstrom and Diego Rosso University of California – Los Angeles University of California – Irvine Feb 8, 2010

http://www.seas.ucla.edu/stenstro/Aeration.pdf

Turbo Blower

Twin 350 HP Neuros Blower Package Project cost estimate \$1.5 M Actual \$844,118 Incentives \$514,612 Net Cost \$329,505 Annual Power Savings 2,000,000 KWH Annual Cost Savings @ \$0.062/kwh \$124,000 Pay back 2.7 years

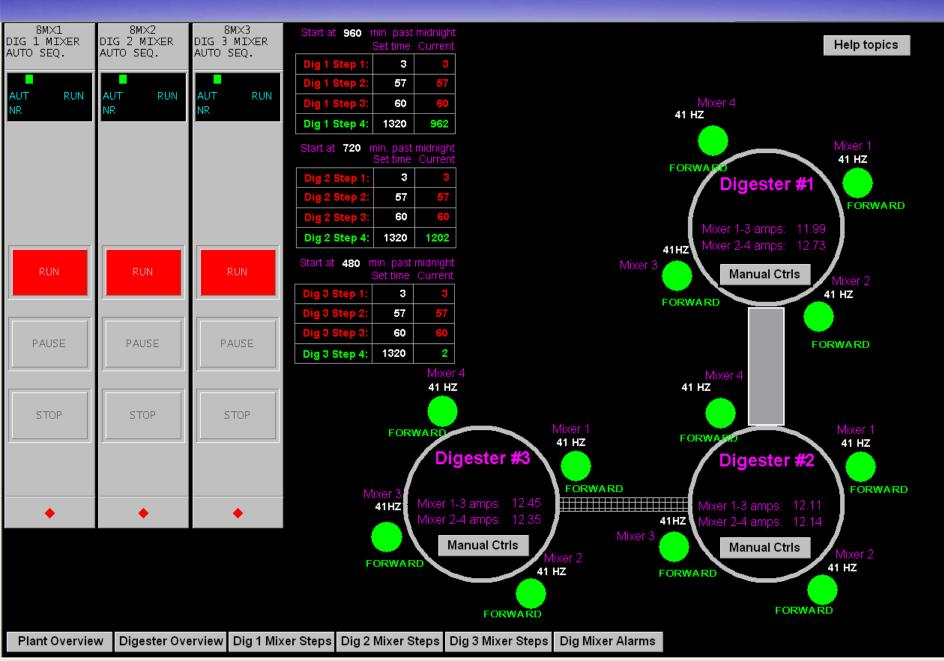
Co-Gen 800 KW Induction Generator ~ Supplies 53% of onsite power usage. Hot water for digester heating, Admin, Maintenance

> 32% methane production flared

Provider compensation set at KWH \$ +\$.005 /KWH 2010 production 6,325,065 KWH, \$285,893 2011 production 5,613,758 KWH, \$264,969 2112 production 5,402,352 KWH, \$257,692

Load Shedding

- Genset fail drop equal equipment- blower
- Lower return rates
- Reduce/ stop pumping
- Lower D.O. set points
- Reduce channel aeration
- Reduce reclaim water flow
- / pressure
 Shut blower off for a few hours



30

\$38,000 incentive from provider One drive runs two mixers.

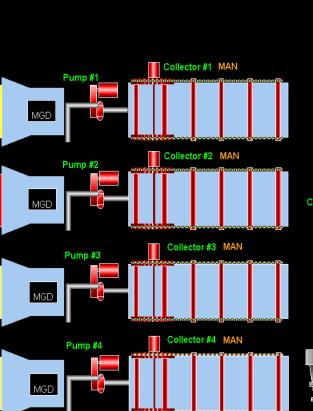
Saves 250,000 KWH / \$15.5K annually Added project cost \$68K

Mixer Energy Conservation SCADA Control

Maximum Motor Starts per Hour

Motor Size HP	Max Starts per Hour	Minimum Off Time- Seconds
5	16	42
10	12.5	46
25	8.8	58
50	6.8	72
100	5.2	110

Motor Stop/Start Added Cost verses continuous run. Motor start is 8X normal run KW. 100 HP motor will add 13 cents per start (\$0.05 / kwh). This equals 2.1 minutes of normal run time.


Equipment Rotation

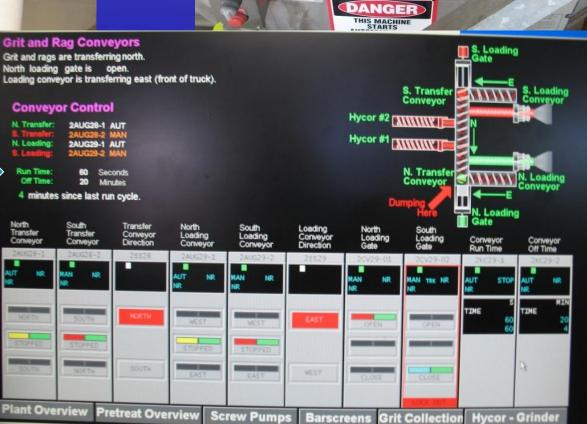

Stop before you start- save demand charge

HP	Demand @	100 HP - \$31/minute Best
	\$6.25/KW	\$450.00 Practice
10	\$47	\$400.00
	ΨΤΙ	\$350.00
25	\$117	\$300.00
20	ψΠ	\$250.00
50	\$233	\$200.00
50	ΨΖΟΟ	\$150.00
100	\$466	\$100.00
	φ···ΟΟ	\$50.00
500	\$2,331	
	\$_ , \$\$.	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Minutes

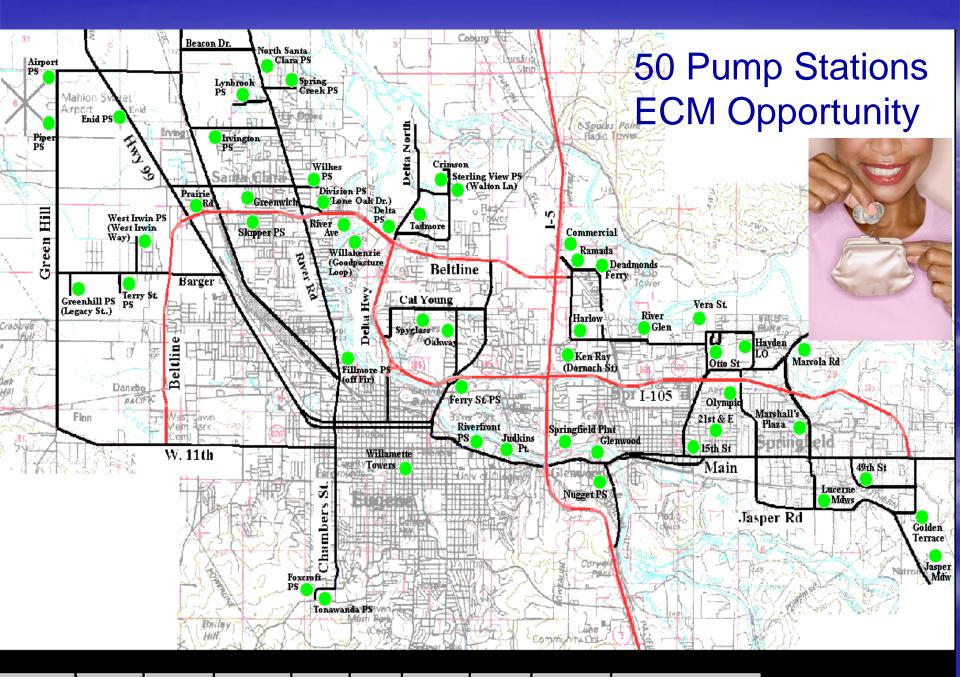
3 GRIT PUMP #3 GRIT COLLECTOR

Grit Collection System

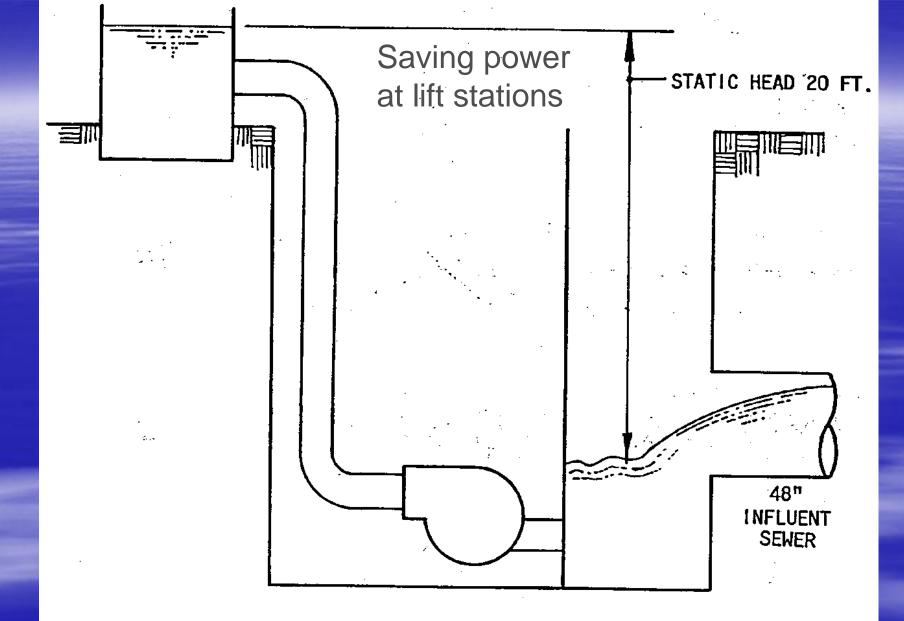
1


Demand Charges 100 hp = \$466 mo 25 hp = \$117/ mo

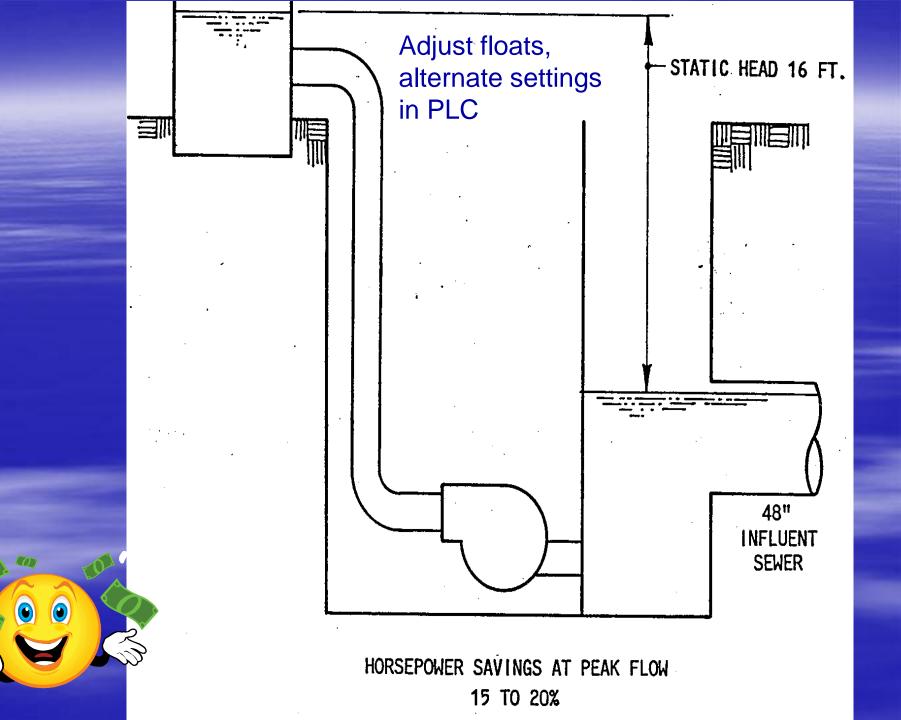
Maintenance savings = big bonus


DANGER

Timers to adjust run time not only saves power but can be an even bigger savings for maintenance.


the

Pumping


PM pumps/ motors- excessive dirt, alignment, bearing play, motor temp, vibration, seal water, voltage 3.5% diff between legs = 25% temp increase

- Flush Lines (we see 53% savings) (320 gpm to 490 gpm)
- Pump control- Variable speed, timers, start stop points, stager for demand savings (grit pump/collector)
- Determine which pump on a header is most efficient- use it as lead
- Pump Station: KWH/Run Time (station as a whole and individual pumps)

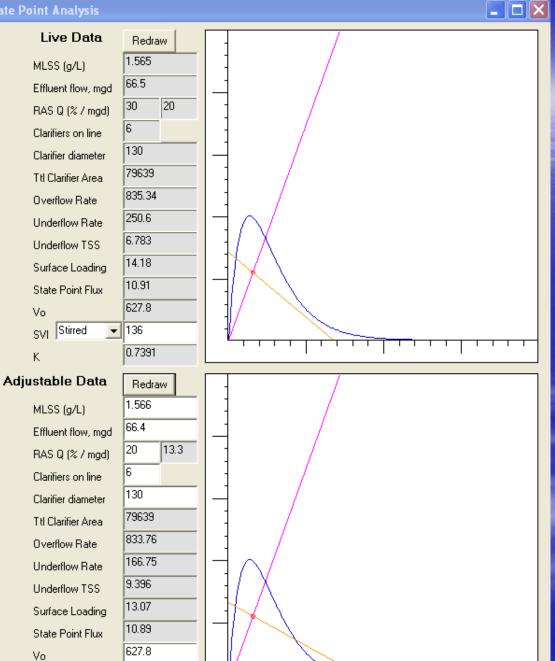
Horsepower = (Ft of head X GPM) ÷ (3960 X Efficiency)

HP for 1 mgd anoxic recycle pump = $(5'X694) \div (3960X.90) = .97$ HP

% Return Sludge Rate MLSS X 100 / ((1,000,000 /SVI) – MLSS)

Adjusted WW operation from 28' lift to 21' lift = 24% reduction in energy.

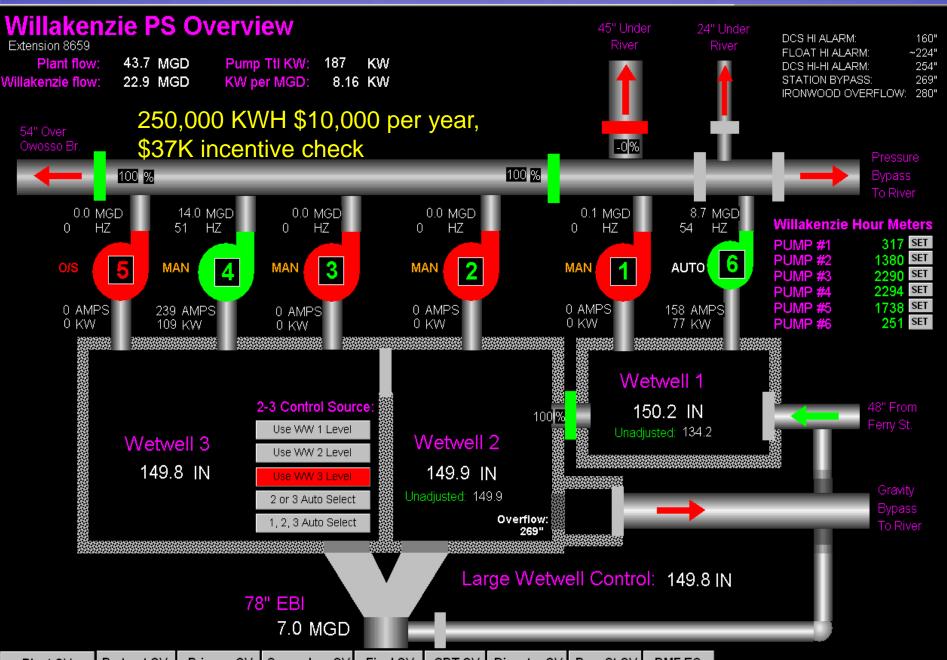
the second se	the second s	the second s	the second s
FY 12 Month	% RSF	KWH Saved	\$\$ Saved
Jul	33.4	1,547	\$91
Aug	31.6	2,936	\$173
Sep	35.3	-278	-\$16
Oct	30.5	4,114	\$243
Nov	31.6	3,857	\$228
Dec	31.1	4,692	\$277
Jan	28.6	13,757	\$812
Feb	29.2	10,103	\$596
Mar	25.8	27,941	\$1,648
Apr	27.5	16,635	\$981
May	27.9	9,091	\$555
Jun	29.2	6,617	\$404
	Total	101,011	\$5,960


Stirred

SVI

K

▼ 136


0.7391

State Pont Analysis Effected by: Flow **MLSS** concentration **RSF%** # Clarifiers online SVI Settling velocity

Settleometer Tests to determine safe MLSS concentration that floculates

Design Opportunity + Equipment Replacement

Odorous Air ECM			
VFD Control of 100 HP and 50HP Fans	Month		
Incentive Savings \$80K. 536,000 KWH saved annually.	Month	KWH	Cost
Air flow 41,000-25,000 cfm	Jan-:	11 77,748	\$4,587
	Feb-:	11 70,224	\$4,143
	Mar-1	11 76,632	\$4,521
	Apr-1	11 43,992	\$2,596
	May-1	11 36,582	2 \$2,158
	Jun-:	11 30,643	\$1,808
	Jul-:	11 26,085	5 \$1,539
ViniciCale*	Aug-1	11 21,866	5 \$1,290
	Sep-2	11 19,087	7 \$1,126
62 · r let 00	Oct-2	11 18,459	\$1,089
	Nov-2	11 18,310) \$1,080
	Dec-2	11 14,910) \$880
	Jan-1	12 14,831	L \$875
	Feb- 1	12 13,857	7 \$818
+147K / \$8,600	Mar -:	12 14,651	L \$864

•OJ "Turn off lights when not needed"

Process area HVAC control

Use Audit program to check settings

LED Street Lighting

16 Lights installed @ cost \$11,664
KWH savings 15,067 /yr = \$829/yr
>150,000 hour lamp life
\$320 year maintenance saving
Incentive \$6,757
Simple pay back 4.3 yrs

			Annual kWh		Utility Project		Annual		Savings to		
Item	Year	Description	Savings		ncentive		Cost		Savings*		Date
		Energy Conservation Projects				<u> </u>					
A		Replace coarse diffusers with fine bubble	1,100,000	\$	126,128	\$	310,467	\$	68,200	\$	935,000
В		Lighting retrofit from T12 to T8, motion sensors.	173,600	\$	16,580	\$	24,110	\$	10,763	\$	140,963
С		Cogen engine upgrade	2,102,400	\$	-	\$	652,000	\$	130,349	\$	1,707,149
D		W2 pump VFD	221,146	\$	33,418	\$	100,000	\$	13,711	\$	179,571
E		RAS pump VFD	225,590	\$	33,839	\$	416,763	\$	13,987	\$	174,268
F	2001	Reduce size and improve efficiency of biofilter fan motors.	15,768	\$	3,154	\$	3,932	\$	978	\$	10,170
G	2003	Instrument air inter-tie	17,000	\$	2,550	\$	8,009	\$	1,054	\$	9,393
Н	2005	Reduce size and improve efficiency of recycle pump.	52,453	\$	3,784	\$	25,000	\$	3,252	\$	23,814
I	2005	Rebuild screw pump drives (motor, gearbox, coupler) and trough.	100,000	\$	15,000	\$	100,000	\$	6,200	\$	45,400
J	2006	Mechanical mixers on digesters replace gas mixing.	250,000	\$	38,000	\$	68,000	\$	15,500	\$	100,625
К	2006	Add VFD and improve efficiency of biosolids irrigation pumps.	122,000	\$	18,300	\$	60,000	\$	7,564	\$	49,105
L	2007	Add VFDs and improve efficiency of aeration mixers.	48,000	\$	7,200	\$	103,000	\$	2,976	\$	16,776
Μ	2008	Primary solids removal 25.5% improvement	746,250	\$	-	\$	224,000	\$	46,268	\$	220,144
Ν	2009	LED street lighting	15,067	\$	6,757	\$	11,664	\$	934	\$	3,601
0	2009	Cyclone overflow for sluice water.	53,044	\$	16,000	\$	10,000	\$	3,289	\$	12,678
Р	2009	Willakenzie pump station and force main rehab.	250,000	\$	37,500	\$	150,000	\$	15,500	\$	59,750
Q		Dissinfect with neat solution, not W2 carrier water.	85,000	\$	12,750	\$	50,000	\$	5,270	\$	20,315
R	2009	Add VFDs, dampers, and pressure sensors on odorous air fans.	950,000	\$	80,417	\$	107,000	\$	58,900	\$	227,050
S		Non-aerated grit removal	199,494	\$	-	\$	-	\$	12,369	\$	36,208
Т		DO control of pretreatment channel blowers.	70,000	\$	7,000	\$	10,000	\$	4,340	\$	4,340
U		Acid clean force main (5.5 miles) to lagoon	31,000		,	\$	10,000	\$	1,922	\$	1,922
V		Replace multi-stage blower with turbo blower.	2,000,000	\$	500,000	\$	850,000	\$	124,000	\$	-
		TOTAL	8,827,812	\$	958,377	\$	3,293,945	\$	547,324	\$	3,978,241
			0,027,012	ľ	556,677	ľ	0,200,040	Ť	547,524	Ŷ	3,370,241
		Non-Cost Process Control Improvements									
W	1986	RAS pump wet well setting	144,176	\$	-	\$	-	\$	8,939	\$	165,442
Х	1988	Process DO setpoint	780,000	\$	-	\$	-	\$	48,360	\$	858,000
Y		Blower Header Pressure control (11%/psi)	390,000	\$	-	\$	-	\$	24,180	\$	345,735
Z		Grit Pump Timer/Flow Control	216,000	\$	-	\$	-	\$	13,392	\$	175,392
AA		Lower W2 pressure setpoint	113,872	\$	-	\$	-	\$	7,060	\$	87,966
BB		Return Sludge Flow %	101,000	\$	-	\$	-	\$	6,262	\$	18,332
		TOTAL	1,745,048	\$	-	\$	-	\$	108,193	\$	1,650,867
			_,,.			Ť				Ŧ	_,,
		GRAND TOTAL	10,572,860	\$	958,377	\$	3,293,945	\$	655,517	\$	5,629,107

Summary

Good operations is energy conscious everyday Energy use is a human behavior problem (Success is an exercise in human relations) As supply deceases, the cost will rise "What About Bob" - Richard Dreyfuss & Bill Murray Baby Steps, Baby Steps Every Watt, every therm, counts Best ECMs 1. Engineered 2. Automated 3. Human interface Just Do It !, Implement, implement, implement

What do we do with all the energy saved?

Store power in an electrolyte cell under the base of our signal tower On July 4th we discharge the savings back to mother earth